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Abstract 

Using 2 x 2 and 3 × 3 matrices, Rao & Suryanarayan 
[Physica (Utrecht) (1994), B193, 139-146] and Clark & 
Suryanarayan [Acta Cryst. (1991), A47, 498-502] have 
obtained quasiperiodic tilings of the plane with n-fold 
rotational symmetry, n = 2, 3, 4, 5, 6, 8 with two unit 
prototiles. In this paper, a generalized method for 
generating quasiperiodic lattices for n-fold non-crystal- 
lographic axes is given by employing Chebychev and 
associated Chebychev matrices of order n, and some of 
their properties are derived. The method is based on the 
self-similarity principle. The properties of the matrices 
are applied to create self-similar tiles by solving an 
eigenvalue problem that shows how many of each type of 
tile to use and sheds light on how to configure the 
boundaries of the next generation's tiles. The tilings 
generated contain the above-mentioned filings as special 
cases. Thus, this approach introduces the basic tech- 
niques from linear algebra to the study of filings. 

1. Introduction 

Chebychev polynomials un of the second kind are best 
known from classical analysis, part of a huge body of 
knowledge of families of orthogonal polynomials arising 
most often in the constructive theory of functions. The 
classic reference is Szeg6 (1959). It is said that the 
Chebychev polynomial is like a fine jewel that reveals its 
different characteristics under illumination from varying 
positions (Rivlin, 1974). There is yet another area where 
it shows its brilliance: quasiperiodic filings. 

Initiating the inflation method, Penrose (1974) showed 
how to tile the Euclidean plane with 5-fold symmetry 
aperiodically, using the two rhombi whose vertex angles 
are zr/5 and 2~r/5. A decade later, when Shechtman, 
Blech, Gratias & Cahn (1984) discovered that rapidly 
solidified A1-Mn alloys exhibited the forbidden 5-fold 
symmetry in electron diffraction patterns, Penrose tilings 
became possible models (Levine & Steinhardt, 1984; 
Gratias & Michel, 1986) for structural ordering in 
quasicrystals. Now several methods are available to tile 
a plane aperiodicaUy with 5-fold symmetry. One of them 
is the generalized projection method initiated by de 
Bruijn (1981), who showed that the Penrose patterns 
could be derived by projecting a 5-dimensional cubic 
lattice, and suggested that the process could be general- 

© 1995 International Union of  Crystallography 
Printed in Great Britain - all rights reserved 

ized. Using the projection method of de Bruijn (1981), 
Whittaker & Whittaker (1988) obtained nonperiodic 
filings with n-fold symmetry with n = 5, 7, 8, 9, 10 and 
12. However, when their method was applied to the cases 
of 3-, 4- and 6-fold rotational symmetry, it produced 
periodic tilings. Clark & Suryanarayan (1991) con- 
structed quasiperiodic filings with 3-, 4- and 6-fold 
rotational symmetry using the inflation method, proving 
that the 3-, 4- and 6-fold symmetry is compatible with 
nonperiodicity. The inflation method was also used by 
Watanabe, Ito & Soma (1987) to build a tiling with 8- 
fold symmetry; the same tiling was obtained by Whit- 
taker & Whittaker (1988) using the projection method. 
Balagurusamy, Ramesh & Gopal (1992) have recently 
constructed 5-fold and 10-fold nonperiodic tilings using 
a particular arrangement of rhombi of the previous 
generation. 

In this paper, we develop a method that is related to 
Penrose's inflation method. However, we use a matrix 
eigenvalue approach to determine each tiling, thus 
providing a mathematical basis for the inflation (defla- 
tion) process. We do this by considering the properties of 
the Chebychev polynomial of the second kind, un(x), and 
the matrix associated with it, Un(x). Related to UEk(X) and 
U2~+l(x) are two matrices of order k, Ak(x) and Bk(x), 
whose eigenvalues are related to the combinatorics of 
quasiperiodic tilings of the Euclidean plane. In fact, the 
eigenvalues of A t and B k define k kinds of rhombi that 
turn out to be basic building blocks, prototiles (Grtin- 
baum & Shephard, 1987). Thus, each matrix provides a 
natural setting for generating a class of nonperiodic 
tessellations of the plane, which contain, among others, 
the tilings generated by Balagurusamy et al. (1992), 
Clark & Suryanarayan (1991), Penrose (1974) and 
Watanabe et al. (1987). The two matrices not only 
define the k parent cells but also furnish a formula for 
self-similar subdivision (or build-up) of the parent cells 
into smaller (or larger) rhombi, thus giving a tessellation. 
In a self-similar subdividing operation, the underlying 
question is how many unit rhombi (rhombi with edge 
length one) of each type are required to pack the two 
first-generation cells? The answer lies in solving the 
underlying inflation (or deflation) problem (Clark & 
Suryanarayan, 1991). 

When tiling a plane, one has to make sure that the 
edges of the tiles match along the boundaries with their 
immediate neighbors. Therefore, in generating a larger 
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replica of a tile from one generation to the next, one has 
to define matching conditions (forcing rules) for the 
edges which have to be obeyed all through the 
construction of the tiling. Many a time one has to go 
back and forth using trial-and-error methods to define a 
matching condition that is satisfied by the tiling. For 
example, in order to use first-generation tiles as building 
blocks for self-similar second-generation tiles, we must 
be sure that the half-rhombi along the edges agree, thus 
restoring the whole rhombi. It is not obvious that the 
matching conditions will be fulfilled simply by replacing 
a prototile with the corresponding first-generation tiles. 
However, in one instance it is fairly obvious because the 
edge sequence has the useful property of palindromy (the 
property that the edge length of each rhombus of one 
generation is made up of a sequence of edges and 
diagonals of rhombi of its previous generation such that 
the sequence reads the same backwards as forwards, as 
in Figs. 2 and 3). Thus, all the rhombi of the same 
generation match along their common boundaries, 
forcing quasiperiodicity. Even though there are infinitely 
many ways to arrange the tiles with identical edge 
sequencies, Balagurusamy et al. (1992) have generated 
quasiperiodic tilings in which the decision must be made 
for the first generation only, and subsequent generations 
follow the decisions made in the first generation. 

2. Generating method 

Even though the problem of tiling is ancient, some 
striking developments have occurred since the 1970s 
(Griinbaum & Shepherd, 1987). Recent work in 
quasicrystals has emphasized 5-fold rotational symmetry 
for good empirical and theoretical reasons. In this paper, 
we use unit rhombi defined by the k components of the 
eigenvector associated with the largest eigenvalue of A k 
(or Bk) as prototiles. The identities 

2n [ ~~ sin(jzr/2n + 1/2)] = n cot(zr/4n), 
j=l 

(2n+ 1)[j=~sin(jzr/2n+ 1)] 

-- [(2n + 1)/4]cotzr/[2(2n + 1)] 

are the immediate consequencies of the property that 
a regular convex polygon of 4n or 4 n + 2  can be 
decomposed into n kinds of prototiles with vertex angles 
offlr/2n orflr/(2n + 1), respectively (see Fig. 1). These 
prototiles are used as building blocks by placing them 
edge-to-edge, without overlaps or gaps, in infinite 
assemblies called tilings, so that the Euclidean plane is 
covered. A rhombus may be cut along a diagonal as long 
as the cut diagonal edge appears on the outer boundary of 
the tile; this is in anticipation of matching the half- 
rhombus with a half-rhombus belonging to another tile, 
thus producing a full rhombus. For example, in Figs. 

2(a)-(c), only the 27r/6 rhombus is cut along its larger 
diagonal; similarly, in Figs. 3(a)-,(c), only the 2zr/7 
rhombus is cut along its larger diagonal. Thus, the rule 
for cutting a rhombus along a diagonal is dictated by the 
fact that the first-generation tiles (as well as the 
succeeding generations) will also be rhombi, that is, 
larger replicas built from the prototiles. 

3. Chebychev matrices 

Chebychev polynomials of the second kind are defined 
by (Rivlin, 1974) 

x = cos 0, Un(X) = sin(n + 1)0/sin 0. (1) 

From this, Uo(X ) = 1, ul(x ) = 2x and by applying the 
trignometric identities, we get the classical recurrence 

Fig. 1. Regular polygons of 10, 12 and 14 sides and their prototiles. 

(a) 

(b) 

(c) 
Fig. 2. The first-generation tiles defined by B3(1). 
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relation 

U n = 2 X U n _  1 - - U n _  2, u 0 = l ,  u 1 = 2 x  . . . . .  (2) 

It also follows that these polynomials can also be 
expressed by the relation u,,(x) = det U.(x), where U.(x) 
denotes the n × n tridiagonal symmetric matrix 

2x 1 0 --. 0 0 

1 . . .  o oo 
1 21: . . .  0 

U . ( x )  = . . . .  . . 

0 0 . . .  2x 
0 0 . . .  1 

(3) 

There is another, much less known, recurrence relation 
that also generates the Chebychev polynomials: 

which, by further application of trignometric identities, 
reduces to 

sinO[u.,(x)u,,(x) - um_l(X)U,,_l(X)] = sin(m + n + 1)0 

= sin O[um+,,(x)]. • 

The following 'odd--even' breakdown will be funda- 
mental in the sequel. 

Corollary 1 

U2n = (U n dr Un+l)(Un+ 1 - -  Un_l) , n = 1, 2 . . . . .  (6) 

Proof  

S e t m - - n i n ( 4 ) .  • 

Theorem 1 

um+.(x) = de t [  Urn(X) U~_I(X) ] 
LU._I(X ) U.(X) J '  m , n =  1,2 . . . . .  

( 4 )  

Proof 

From (1), we get 

sin 20[um(x)u.(x) - Um_l (X)Un_l (X)] 

= sin(m + 1)0 sin(n + 1)0 - sin mO sin nO, (5) 

Corollary 2 

U2n+ 1 = Un(Un+ 1 m Un_l) ,  

Proof 

S e t m = n + l i n ( 4 ) .  • 

n = 1, 2 . . . . .  (7) 

Theorem 2 

The eigenvalues of U.(x) are 2j = 2 x +  
2 cos[jTr/(n + 1)], with associated eigenvectors vj, where 
(vg)i = sin[ijrr/(n + 1)], j = 1, 2 . . . .  , n. 

(a) 

(b) 

(c) 
Fig. 3. The first-generation tiles defined by As(l). 

Proof 

Consider the ith element (U.vj) / in  the product U,,vj, 
i = 2  ....  , n - l ,  

(U.vi) i = sin ( i -  1)rr ijzr (i + 1)j~r n + 1 4- 2x sin + sin 
n + l  n + l  

( 8 )  

(Note that the above relation is also valid for i = 1, n.) 
Using the identity sin(a - b) + sin(a + b) = 2 sin a cos b 
with a -- [ijzt/(n + 1)], b -- [jzt/(n + 1)] gives 

OUnVj)i = 2 sm(~-~cos ~-~--~ + 2 x s i n - -  

= (2yVy)i, j = l ..... n. • 

(n + 1) 

(9) 

We now interpret geometrically the largest eigenvalue 
of Un(x ), 21 = 2x + 2 cos[Jr/(n + 1)]. When 2x is a non- 
negative integer, ,;t I is an integer length 2x plus the length 
of the long diagonal, 2 cos[zr/(n + 1)], of a unit-edged 
rhombus with vertex angle 2rr/(n + 1). The elements of 
the associated eigenvector vl are areas of unit rhombi 
with vertex angle jrr/(n + 1), j = 1 .. . . .  n. Thus, the 
relation Un(X)Vl suggests that unit rhombi can be 
combined as building blocks, the precise numbers 
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determined by the elements of U,,, into larger rhombi 
with edge length 21 . The edges of the larger rhombi are 
built from the edges of 2x unit rhombi plus one half- 
rhombus cut along its diagonal. Details of the construc- 
tion follow. First, a minor inconvenience: the non- 
distinctness of the elements of vl. From a geometric 
point of view, sin[rc/(n + 1)] = sin[nzc/(n + 1)], 
sin[2zr/(n + 1)] = s in [ (n -  1)zr/(n + 1)] etc. refer to the 
same rhombi from two different vertex angles. We could 
get around this by adding the columns of U n (last to first, 
next-to-last to second etc.), thus compressing U, into a 
matrix with eigenvectors consisting of distinct members. 
We prefer a less heavy handed approach, letting the 
factorizations of the corollaries guide the way. 

The corollaries suggest that u, is always the product of 
two determinants which are themselves 'Chebychev 
polynomials' in the sense that u t + ut_ 1, u t - ut_ 1 and 
Uk+ 1 - -  Uk_ 1 satisfy the recurrence (2). Indeed, 

U k "a t- U k _  1 - -  2 X U k _ I  - -  U k _  2 -a t- U k _  1 

: (2x + 1)ut_ 1 - Uk_ 2 

"2x 1 0 . . .  0 0 

1 2x 1 . . .  0 0 

0 1 2x . . .  0 0 

0 0 0 . . .  2x 1 

0 0 0 -.- 1 2x4-1 

(10) 

= det 

and 

u t +  1 - -  u t _  1 - -  2 x u  t - -  2 u t _  1 

2x 1 

1 2x 

0 1 
= det 

• ° 

0 0 

0 0 

0 --. 0 0 

1 . . .  0 0 

2x . . .  0 0 

: " .  : : 

0 . . .  2x 1 

0 . . .  2 2x 

(11) 

differ from (1) at just one position. Therefore, we focus 
on the two matrices (10) and (11) above. For n = 2k + 1, 
let A t denote the k x k matrix 

A k = 

-2x 1 0 . .-  0 0 

1 2x 1 . . .  0 0 

0 1 2x .- .  0 0 

0 0 0 -.- 2x 1 

0 0 0 --. 2 2 x + l  

n = 1 , 3 , 5 , . . . .  (12) 

For n = 2k, let B t denote the k x k matrix 

n k ~ 

2x 1 0 0 . . .  0 

10 2x 1 0 " "  ~ 
1 2x 1 . - .  

0 . . .  1 2x 
• -- 0 0 2 

n = 2 , 4 , 6 , . . . .  (13) 

All statements with A t (or Bt) assume that n = 2k + 1 
(or n = 2k). 

Theorem 3 

ff 2 = 2x + 2 cos(n'/n) 
Akv = 2v and Btv = 2v. 

a n d  v i : sin(izt/n), then 

Proof  

If we consider the ith element (Akv)i in the product 
Atv, i = 1 ..... k -  1, we essentially get a repetition of 
(8) and (9) with i =  1. When i = k ,  noting that 
sin(krr/n) = sin[(k + 1):r/n], we have 

(Akv)k = sin[(k - 1)~r/n] + (2x + 1)sin(kTr/n) 

= sin[(k - 1)~r/n] + 2xsin(krr/n) + sin(k~r/n) 

= 2 sin(k~r/n) cos(rr/n) + 2x sin(kTr/n) 

= ( ~ v ) k .  

Similarly, we have only to show that (Bkv)k = (2v)k. But 
(Bkv)k = 2 sin[(k - 1)zt/n] + 2x sin(kzt/n) leads to a 
repetition of the above result. • 

Thus, A k and B k not only define the k unit prototiles 
but also determine the self-similar replicas of the 
prototiles that tile the plane. 

Using the above results, let us construct some 
quasiperiodic tilings. Tilings produced by B 2 and A 2 
have already been studied in considerable detail (Clark & 
Suryanarayan, 1991; Balagurusamy et al., 1992; Rao & 
Suryanarayan, 1994). To build tilings generated by A3(x) 
and B3(x), let us fh'st consider the sequence B3(x) for 
x = 0 , ½ ,  1, 3 . . . . .  

B3(x) = [ ~  

Its eigenrelations are 

lO] 
2x 1 . 
2 2x 

(14) 

B3(x)[sin(zr/6 ), sin(2zr/6), sin(3zr/6)] r 

= [2x + 2 cos(zr/6)][sin(zr/6), sin(2zr/6), sin(3zr/6)] r, 

B~(x)[sin(zr/6), sin(2zr/6), sin(3zr/6)] r 

= [2x + 2 cos(zr/6)]2[sin(zr/6), sin(2zr/6), sin(3zr/6)] r. 

(15) 
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The last equation is a combinatorial identity, area 
identity, which reveals how many unit rhombi of each 
type to use in building larger replicas with edge length 
2(x) = 2x + 2cosQr/6). In fact, the exact numbers of 
each rhombus can be read from the rows of B2(x): 

[ 4 x 2 +  1 4x 1 ] 
B2(x)= | 4x 4x 2 + 3  4x ] .  (16) 

L 2 8x 4x 2 + 2  

Let r l, r 2 and r 3 denote the (zr/6)-, (2rr/6)- and (3zr/6)- 
unit rhombi, respectively. We can then formally write 
(16) as 

(4x 2 + 1)r I + 4xr  2 + r 3 -- it(x)r 1 , (17) 

4xr~ + (4x 2 + 3)r2 + 4xr3 = it(x)r2, (18) 

2r I + 8xr 2 + (4x 2 + 2)r 3 = it(x)r 3, (19) 

where it(x) is the expansion factor. In particular, if x = 1, 
then the above set of identities becomes 

5r 1 + 4r 2 + r3 -- 2(1)rl, 4rl + 7r 2 q- 4r 3 

= 2(1)r 2, 2rl + 8r 2 + 6r 3 

= 2(1)r 3. 

The above relation tells us how the first-generation tiles 
are built from the prototiles; The first-generation r 1 tile is 
packed with five rl-prototiles, four r2-prototiles and one 
r3-prototiles, and so on. Fig. 2 shows the construction of 
the first-generation tiles from the prototiles defined by 
B3(1). At first glance, the projections and indentations in 
Figs. 2(c) and 3(c) look like possible mismatches, but in 
fact each is simply a generalized rhombus, which is a 
new aspect of the solution. The reader will see how the 
projections and indentations work in Figs. 4 and 5. 

Similarly, we can build the tiling defined by the matrix 
A3(x). The sequence A3(x), x = 0, 1/2, 1, 3/2 .... yields 

[o '  o A3(x ) = 2x 1 
1 2 x + l  

Its eigenrelations are 

Aa(X)[sin(~/7 ), sin(2n/7), sin(3n/7)] r 
= [2x + 2 cos(rr/7)][sin(rr/7), sin(2rr/7), sin(3rr/7)] r, 

A2(x)[sin(rr/7), sin(2zr/7), sin(3rr/7)] r 

= [2x + 2 cos(rr/7)]2[sin(~r/7), sin(2rr/7), sin(3rr/7)] r. 

(20) 

The last equation is a combinatorial identity which 
reveals how many unit rhombi of each type to use 
i n  building larger replicas with edge length 
2 (x )=  2x + 2cos(Tr/7). In fact, the exact numbers of 

each rhombus can be read from the rows of A3Z(x): 

[4x2 + 1 4x 1 ] 
A2(x)= | 4x 4x 2 + 2  4 x + l  J .  (21) 

L 1 4 x + l  4x2 + 4 x +  2 

If s I, s 2 and s 3 denote the (rr/7)-, (2rr/7)- and (3zr/7)- 
unit rhombi, respectively, we can then formally write 
(21) in the form 

(4x 2 + 1)s 1 + 4xs 2 + s 3 = 2(x)s 1, (22) 

4xs 1 -}- (4x 2 -k- 2)s 2 n t- (4x -1- 1)s 3 = it(x)s2, (23) 

s I 't- (4x -t- 1)s 2 -k- (4x 2 -1- 4x n t- 2)s 3 = 2(x)s3, (24) 

where 2(x) = 2x + 2 cos(rr/7) is the expansion factor. In 
particular, if x = 1, then the above set of identities 
becomes 

5sl + 4s2 + s3 = it(1)s 1, 4sl + 6s2 + 5s3 

= 2(1)s 2, lSl + 5s2 + 10s 3 

= it(1)s3. 

Fig. 3 shows the construction of the first-generation tiles 
from the prototiles defined by A3(1). As we mentioned 
earlier, the eigenrelations are area identities which give 
the exact number of rhombi of each type to use in 
building larger replicas; and the rows of A 2 reveal the 
exact numbers of rhombi of each type to use in building 
larger (or smaller) copies. However, in one case it is clear 
that edges agree (by induction because the edge sequence 
has the property of palindromy). To tile the plane we may 
use the basic models in Figs. 4(a)-(c), with 3-, 6- and 12- 
fold rotational symmetries, respectively, and Figs. 5(a) 
and (b) with 7- and 14-fold rotational symmetry and pass 
to the limit as n approaches infinity. Since our method is 
an instance of a composition process (Grtinbaum & 
Shepherd, 1987), we refer the reader to various 
approaches to prove that such tilings must be nonper- 
iodic. It is intuitively clear, for now, that the limiting 
tilings of figures have a unique point of rotational 
symmetry; thus, we are assured of nonpefiodicity 
because of the lack of translational symmetry. 

Figs. 6(a) and (b) show that the palindromic property 
of the edge sequences in A3(1 ) and B3(1) also enables us 
to tile the surfaces of fight circular cones and fight 
circular cylinders. 

Since A can be diagonalized, we have A = SLS -1, 
where 

sin(rr/7) sin(2zr/7) sin(3~r/7) 
S =  sin(2rr/7) sin(4zr/7) sin(6rr/7) 

sin(3~r/7) sin(6rr/7) sin(9zr/7) 

and 

L =  
"2x+2 cos(zr/7) 0 )] 

0 2x+2 cos(2rr/7) 0 . 
0 0 2x+2 cos(3rr/7 
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The above result enables us to compute A 2'n = SL2mS -~ 
and determine the numbers of zero-generation tiles 
(prototiles) of each kind required to pack the mth- 
generation tiles. We have similar expression for B 2m to 
compute the number of prototiles of each kind required 
to pack the mth-generation tiles. 

In the general case, each matrix Ak(x ) and Bk(x ) 
defines k prototiles. In the particular case for x = 1, 
Ak(1 ) and Bk(1 ) define prototiles with palindromic edge 
sequences. The construction of the first-generation tiles 
for these is similar to the first-generation tiles we have 
built for the tiles defined by A3(1 ) and B3(1 ). 

(a) 

(a) 

(b) 

g- 

(c) 
Fig. 4. (a) 3-fold rotational symmetry, second generation. (b) 6-fold 

rotational symmetry, second generation. (c) 12-fold rotational 
symmetry, second generation. 

(b) 
Fig. 5. (a) 7-fold rotational symmetry, second generation. (b) 14-fold 

rotational symmetry, second generation. 
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4. Concluding remarks 

The tilings defined by Ak(1 ) and Bk(1 ) described above 
are quasiperiodic following the definition of Janssen 
(1988) and the arguments put forth by Balagurusamy et 
al. (1992). Now a word about the 'class identifier' x that 
appears in the matrices Ak(x ) and Bk(x ). It determines (a) 
the inflation factor 2 and (b) the precise numbers of 
rhombi required to build the next generation rhombi. 
Watanabe et al. (1987) calculated the diffraction pattern 

: ',. 

/" ~f 

(a) 

/ 

/'" " .": , , / , // " .-'/ 

(b) 

Fig. 6. Tiling on (a) a right circular cone and (b) a right circular 
cylinder. 

in the case of the rr/4 tile defined by B2(1), using a FFT 
algorithm about the center of the rr/4 rhombus by placing 
unit scatterers at the 1423 vertices. The diffraction 
pattern showed sharp Bragg-like peaks with 8-fold 
symmetry as we should expect, because the tiling with 
8-fold symmetry is built with eight rr/4 prototiles at the 
center. Similarly, the diffraction patterns for the mth- 
generation tiles, 7r/6, 2rr/6 and 3rr/6 defined by B3(1) 
should exhibit Bragg-like peaks with 12-fold symmetry, 
6-fold symmetry and a 4-fold symmetry, respectively. 
Again, for the mth-generalion tiles defined by A3(1), the 
7r/7 rhombus should exhibit 14-fold symmetry and the 
2rr/7 rhombus should exhibit a 7-fold symmetry. These 
results can also be extended for the tiles defined by Ak(x ) 
and Bk(x). 

We could generalize our results to tiling a p- 
dimensional space, by extending the eigenrelations: 

AP(x)(s l ,  s 2 . . . . .  Sk) = {2X + 2 COS[n'/(2n + 1)]} p 

x (Sl, s 2 ..... Sk) , (25) 

B~(x)(r l, r 2 ..... rk) =[2x + 2 cos(n'/2n)] k 

x (r 1, r 2 ..... rk), (26) 

where sj = s in[ j r r / (2n  + 1)] and rj = s in ( j rc /2n) .  
However, the difficulty in working in three or higher 

dimensions lies in determining the shapes of the 
prototiles and how they should be cut and fit to produce 
larger replicas of themselves. This is the subject of 
another paper. 
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